针对弱电网普遍存在的直流偏置、频率变化等问题,提出1种适合单相并网逆变器的改进反Park变换锁相环IPT-PLL(inverse Park transform phase-locked loop)技术。首先,在鉴相环节选用Park变换后的α分量为基准电压,解决电网电压直流偏置问题,采用1/4基波周期延时的方法构造其正交分量;其次,引入拉格朗日插值多项式逼近分数阶延时,以降低频率变化造成的延时计算误差,并理论分析PI调节器的设计方法;最后,通过实验验证了所提改进IPT-PLL频率适应性强,能明显抑制电网直流偏置干扰,且具有较好的动、静态性能。
随着新型电力系统中可再生能源渗透率的不断攀升,以及传统火电机组的比例持续下降,新型电力系统面临严峻的频率控制问题,而分布式电池储能系统BESS(battery energy storage system)可为解决上述问题提供有效途径。基于此,首先提出1种基于稀疏通信网络的分布式BESSs鲁棒负载频率控制LFC(load frequency control)方法。接着,为了抑制与系统运行相关的不确定性,设计了双层模型预测控制以改善BESS的响应特性,从而提升LFC效果。所提方法可满足系统各种运行物理约束,以实现区域控制误差的最小化。然后,考虑通信延迟对BESS参与频率调节性能的影响,设计了1种模糊协调控制器件以协调BESS和传统发电机,可避免传统发电机在长延迟情况下误运行。最后,通过仿真实验对所提方案进行验证,结果表明在不同容量、额定功率、充放电系数、荷电状态和时间常数等参数下,分布式BESS中的响应能力和调频效果明显优于传统方法。
随着可再生能源渗透率的不断提高,虽然碳排放降低,但其固有间歇性和波动性也给电力系统带来了惯性和安全经济性下降等问题,电池储能BES(battery energy storage)技术是解决这一问题的重要手段之一。基于此,提出1种面向主动支撑电网电压的基于全状态反馈的电池储能系统自治控制方法。首先,基于Kv(Vg-vg)下垂和虚拟电容C惯量技术,设计静态功率支撑控制和动态电压支撑控制模块,使得电池储能系统可提供电网功率(静态)支撑和电压(动态)支撑;其次,采用全状态反馈方法将电压控制器和电流控制器合并,使得所提控制器设计更系统化和灵活化,并可减小单相接地故障引起的电压振荡;然后,为了维持电池储能荷电状态SOC(state-of-charge)的稳定,设计基于调节因子α的电池储能SOC控制器,以进一步提升电池储能系统的自治运行能力;最后,通过MATLAB和半实物仿真平台对14节点直流系统进行案例研究,仿真结果验证了所提方法在静态功率、动态电压双支撑及单线接地故障时的有效性。研究结果表明,所提方法下电池储能系统可连接到电网中的任何关键节点,通过本地监测扰动可主动支撑电网公共连接点电压,不受扰动影响,且可独立运行控制。此外,该方法还可防止暂态低压事故时变流器过流等问题,最终实现BES的自治运行能力。
随着医疗技术的不断进步,植入式医疗设备IMD(implantable medical devices)在临床上的应用越来越多。由于传统的电池供电方式会给患者带来额外的组织损伤和手术成本,采用无线电能传输WPT(wireless power transfer)技术对IMD供电将成为今后的趋势。然而,如何在有限的空间内设计出高效率的IMD-WPT系统具有较大的挑战性。为此,对比了5种适用于IMD的WPT技术的性能特点;然后以磁谐振式WPT技术为例,具体介绍了磁谐振式IMD-WPT系统设计中的关键问题;最后结合部分磁谐振式WPT技术在一些典型IMD中的应用现状,讨论了IMD-WPT技术未来的研究方向。