徐波, 雷敏, 王钋
摘要 (
)
PDF全文 (
)
可视化
收藏
预测锂电池剩余使用寿命RUL(remaining useful life)可以提高电池供电系统的稳定性和安全性,从而明确故障的发生并及时做出响应。在预测过程中粒子滤波PF(particle filter)常用于在线辨识模型参数,但当PF在线辨识参数时易出现粒子贫化问题,需要大量粒子才能完成状态估计,这将会导致预测结果不准确。为了提高RUL预测的准确性,提出一种基于时间递归神经网络TRNN(time recurrent neural network)和萤火虫算法FA(firefly algorithm)优化PF融合的锂电池RUL预测方法。首先,由于TRNN的泛化能力优于经验模型,并且易于捕捉容量退化的长距离依赖问题,因此选用其模拟各种条件下的电池退化模型;其次,基于FA优化的PF技术对TRNN模型参数进行递归更新,使粒子群移动到高似然区域,从而减少PF的贫化;最后,选择不同条件下不同电池的实验数据进行验证和比较。结果表明,与传统方法相比,该方法具有更高的RUL预测精度。